P. 1 Graphs and Models

Sketch the graph of an equation.

Find the intercepts of a graph.

Test a graph for symmetry with respect to an axis and the origin.

Find the points of intersection of two graphs.

Fit a mathematical model to a real-life data set.

P. 1 Graphs and Models

1. A graph is symmetric with respect to the y-axis if, whenever (x, y) is a point on the graph, then $(-x, y)$ is also a point on the graph. This means that the portion of the graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.
2. A graph is symmetric with respect to the \boldsymbol{x}-axis if, whenever (x, y) is a point on the graph, then $(x,-y)$ is also a point on the graph. This means that the portion of the graph below the x-axis is a mirror image of the portion above the x-axis.
3. A graph is symmetric with respect to the origin if, whenever (x, y) is a point on the graph, then $(-x,-y)$ is also a point on the graph. This means that the graph is unchanged by a rotation of 180° about the origin.

Tests for Symmetry

1. The graph of an equation in x and y is symmetric with respect to the y-axis when replacing x by $-x$ yields an equivalent equation.
2. The graph of an equation in x and y is symmetric with respect to the x-axis when replacing y by $-y$ yields an equivalent equation.
3. The graph of an equation in x and y is symmetric with respect to the origin when replacing x by $-x$ and y by $-y$ yields an equivalent equation.

P. 1 Graphs and Models

Sketch the graph of an equation.
Find the intercepts of a graph.
Test a graph for symmetry with respect to an axis and the origin.
Example 1: Graph the following, then test for symmetry.
a. $y=x^{3}-4 x$
b. $y=x^{2}-4$

x	y

x	y

P. 1 Graphs and Models

- Find the points of intersection of two graphs.

Example 2: Find all points of intersection of the graphs of $y+x^{2}=9$ and $y-x=3$.

P. 1 Graphs and Models

- Fit a mathematical model to a real-life data set.

Example 3: Simple harmonic motion can be modeled by a sine or cosine function. Write the equation for the simple harmonic motion that satisfies the specified conditions.

Displacement (t=0)	0 cm
Amplitude	4 cm
Period	6 sec

P. 2 Linear Models and Rates of Change

Find the slope of a line passing through two points.

Write the equation of a line with a given point and slope.

Interpret slope as a ratio or as a rate in a real-life application.

Sketch the graph of a linear equation in slope-intercept form.

Write equations of lines that are parallel or perpendicular to a given line.

P. 2 Linear Models and Rates of Change

- Find the slope of a line passing through two points.

Interpret slope as a ratio or as a rate in a real-life application.
Definition of the Slope of a Line
The slope m of the nonvertical line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad x_{1} \neq x_{2} .
$$

Slope is not defined for vertical lines.

Ratios and Rates of Change

The slope of a line can be interpreted as either a ratio or a rate. If the x - and y-axes have the same unit of measure, then the slope has no units and is a ratio. If the x - and y-axes have different units of measure, then the slope is a rate or rate of change. In your study of calculus, you will encounter applications involving both interpretations of slope.

The rate of change found in Example 3 is an average rate of change. An average rate of change is always calculated over an interval. In this case, the interval is [2000, 2012]. In Chapter 2, you will study instantaneous rate of change.

P. 2 Linear Models and Rates of Change

Find the slope of a line passing through two points.
Interpret slope as a ratio or as a rate in a real-life application.
Example 1: Answer the following slope questions involving ratios and/or rates of change.
a. When driving down a mountainside you notice warning signs indicating that the road has a grade of 12%. This means that the slope of the road is $-\frac{12}{100}$. Approximate
b. The nets sales for a car manufacturer wee $\$ 14.61$ billion in 2011 and $\$ 16.95$ billion in 2013. Find the average rate of change of the net sales over this 2 -year the amount of horizontal change in your position if you have descended 2000 feet vertically.

P. 2 Linear Models and Rates of Change

- Write the equation of a line with a given point and slope.
- Sketch the graph of a linear equation in slope-intercept form.
- Write equations of lines that are parallel or perpendicular to a given line.

Point-Slope Form of the Equation of a Line
The point-slope form of the equation of the line that passes through the point $\left(x_{1}, y_{1}\right)$ and has a slope of m is

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

Remember that only nonvertical lines have a slope. Consequently, vertical lines cannot be written in point-slope form.

$$
\begin{aligned}
& \text { The Slope-Intercept Form of the Equation of a Line } \\
& \text { The graph of the linear equation } \\
& y=m x+b \\
& \text { is a line whose slope is } m \text { and whose } y \text {-intercept is }(0, b) . \\
& \qquad \begin{array}{ll}
\text { Summary of Equations of Lines } \\
\text { 1. General form: } & A x+B y+C=0 \\
\text { 2. Vertical line: } & x=a \\
\text { 3. Horizontal line: } & y=b \\
\text { 4. Slope-intercept form: } & y=m x+b \\
\text { 5. Point-slope form: } & y-y_{1}=m\left(x-x_{1}\right)
\end{array}
\end{aligned}
$$

P. 2 Linear Models and Rates of Change

Write the equation of a line with a given point and slope.

- Sketch the graph of a linear equation in slope-intercept form.

Write equations of lines that are parallel or perpendicular to a given line.

P. 2 Linear Models and Rates of Change

Write the equation of a line with a given point and slope.
\rightarrow Sketch the graph of a linear equation in slope-intercept form.

- Write equations of lines that are parallel or perpendicular to a given line.

Example 2: Given a line that has a slope of 2 and passes though the point $(3,-2)$, find the following:
a. Equation of the line in Slope-intercept form.
b. Sketch a graph of the equation of the line.
c. Equation of a line parallel to it and passing though the point ($-1,2$).
d. Equation of a line perpendicular to it and passing through the point $(3,0)$.

P. 3 Functions and Their Graphs

Use function notation to represent and evaluate a function.

Find the domain and range of a function.

Sketch the graph of a function.

Identify different types of transformations of functions.

Classify functions and recognize combinations of functions.

P. 3 Functions and Their Graphs

- Use function notation to represent and evaluate a function.

Find the domain and range of a function.
Definition of a Real-Valued Function of a Real Variable
Let X and Y be sets of real numbers. A real-valued function f of a real variable x
from X to Y is a correspondence that assigns to each number x in X exactly one number y in Y.

The domain of f is the set X. The number y is the image of x under f and is denoted by $f(x)$, which is called the value of f at \boldsymbol{x}. The range of f is a subset of Y and consists of all images of numbers in X. (See Figure P.24.)

The Domain and Range of a Function
The domain of a function can be described explicitly, or it may be described implicitly by an equation used to define the function. The implied domain is the set of all real numbers for which the equation is defined, whereas an explicitly defined domain is one that is given along with the function. Below are two examples.

$$
\begin{array}{ll}
f(x)=\frac{1}{x^{2}-4}, \quad 4 \leq x \leq 5 & \text { Explicitly defined domain }\{x: 4 \leq x \leq 5\} \\
g(x)=\frac{1}{x^{2}-4} & \text { Implied domain }\{x: x \neq \pm 2\}
\end{array}
$$

A function from X to Y is one-to-one when to each y-value in the range there corresponds exactly one x-value in the domain. For instance, the function in Example 2(a) is one-to-one, whereas the functions in Examples 2(b) and 2(c) are not one-to-one. A function from X to Y is onto when its range consists of all of Y.

Vertial Line Test,

(a) Not a function of x

(b) A function of x

(c) A function of x

P. 3 Functions and Their Graphs

- Use function notation to represent and evaluate a function.

Find the domain and range of a function.
Example 1: For the function f defined by $f(x)=8-2 x^{2}$, evaluate each expression.
a. $f(2)$
b. $f(x-3)$
c. $\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Example 2: Find the domain and range of each function.
a. $f(x)=\sqrt{49-x^{2}}$
b. $g(x)=\sec x$
c. $h(x)=\left\{\begin{array}{c}2-x, x \leq 2 \\ \sqrt{x-2}, x>2\end{array}\right.$

P. 3 Functions and Their Graphs

Sketch the graph of a function.

Identity function

Cubing function

Square root function

Absolute value function
The graphs of eight basic functions ns

Squaring function

Rational function

Sine function

Cosine function

P. 3 Functions and Their Graphs

- Sketch the graph of a function.
elementary functions.

1. Algebraic functions (polynomial, radical, rational)
2. Trigonometric functions (sine, cosine, tangent, and so on)
3. Exponential and logarithmic functions

The most common type of algebraic function is a polynomial function

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a nonnegative integer. The numbers a_{i} are coefficients, with a_{n} the leading coefficient and a_{0} the constant term of the polynomial function. If $a_{n} \neq 0$, then n is the degree of the polynomial function. The zero polynomial $f(x)=0$ is not assigned a degree. It is common practice to use subscript notation for coefficients of general polynomial functions, but for polynomial functions of low degree, these simpler forms are often used. (Note that $a \neq 0$.)

Graphs of polynomial functions of even degree

Graphs of polynomial functions of odd degree

The Leading Coefficient Test for polynomial functions

Remark

Polynomial functions of the form $f(x)=x^{n}$ are often
referred to as power functions.

P. 3 Functions and Their Graphs

Identify different types of transformations of functions.

Basic Types of Transformations ($c>0$)	
Original graph:	$y=f(x)$
Horizontal shift c units to the right:	$y=f(x-c)$
Horizontal shift c units to the left:	$y=f(x+c)$
Vertical shift c units downward:	$y=f(x)-c$
Vertical shift c units upward:	$y=f(x)+c$
Reflection (about the x-axis):	$y=-f(x)$
Reflection (about the y-axis):	$y=f(-x)$
Reflection (about the origin):	$y=-f(-x)$

P. 3 Functions and Their Graphs

Classify functions and recognize combinations of functions.

Just as a rational number can be written as the quotient of two integers, a rational function can be written as the quotient of two polynomials. Specifically, a function f is rational when it has the form

$$
f(x)=\frac{p(x)}{q(x)}, \quad q(x) \neq 0
$$

where $p(x)$ and $q(x)$ are polynomials.
Polynomial functions and rational functions are examples of algebraic functions. An algebraic function of x is one that can be expressed as a finite number of sums, differences, multiples, quotients, and radicals involving x^{n}. For example,

$$
f(x)=\sqrt{x+1}
$$

is algebraic. Functions that are not algebraic are transcendental. For instance, the trigonometric functions are transcendental.

P. 3 Functions and Their Graphs

Classify functions and recognize combinations of functions.

There are various ways to combine two functions to create new functions. For example, given $f(x)=2 x-3$ and $g(x)=x^{2}+1$, you can form the functions shown.
$(f+g)(x)=f(x)+g(x)=(2 x-3)+\left(x^{2}+1\right) \quad$ Sum
$(f-g)(x)=f(x)-g(x)=(2 x-3)-\left(x^{2}+1\right) \quad$ Difference
$(f g)(x)=f(x) g(x)=(2 x-3)\left(x^{2}+1\right) \quad$ Product
$(f / g)(x)=\frac{f(x)}{g(x)}=\frac{2 x-3}{x^{2}+1} \quad$ Quotient
You can combine two functions in yet another way, called composition. The resulting function is called a composite function.

Definition of Composite Function
Let f and g be functions. The function $(f \circ g)(x)=f(g(x))$ is the composite of f with g. The domain of $f=g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f. (See Figure P.30.)

The domain of the composite function $f \circ g$ Figure P. 30

The composite of f with g is generally not the same as the composite of g with f. This is shown in the next example.

```
Test for Even and Odd Functions
The function }y=f(x)\mathrm{ is even when }f(-x)=f(x)\mathrm{ .
The function }y=f(x)\mathrm{ is odd when }f(-x)=-f(x)\mathrm{ .
```


P. 3 Functions and Their Graphs

Classify functions and recognize combinations of functions.

Example 3: For $f(x)=3 x+4$ and $g(x)=2 x^{2}+2$, find each composite function.
a. $f^{\circ} g$
b. $g^{\circ} f$

Example 4: Determine whether the following functions are even, odd, or neither. Then find the zeros of the functions.
a. $f(x)=3 x^{2}+4 x-7$
b. $g(x)=1-\cos x$

P. 4 Inverse Functions

- Verify that one function is the inverse function of another function.
- Determine whether a function has an inverse function.
- Develop properties of the six inverse trigonometric functions.

Definition of Inverse Function
A function g is the inverse function of the function f when
$f(g(x))=x$ for each x in the domain of g
and
$g(f(x))=x$ for each x in the domain of f.
The function g is denoted by f^{-1} (read " f inverse").

$$
\begin{aligned}
& \text { Reflective Property of Inverse Functions } \\
& \text { The graph of } f \text { contains the point }(a, b) \text { if and only if the graph of } f^{-1} \text { contains } \\
& \text { the point }(b, a) \text {. }
\end{aligned}
$$

The graph of f^{-1} is a reflection of the graph of f in the line $y=x$.

The Existence of an Inverse Function
A function has an inverse function if and only if it is one-to-one.

P. 4 Inverse Functions

- Verify that one function is the inverse function of another function.
- Determine whether a function has an inverse function.

Develop properties of the six inverse trigonometric functions.
Example 1: Show that the functions $f(x)=x^{2}+1, x \geq 0$, and $g(x)=\sqrt{x-1}$ are inverse functions of each other.

Example 2: Use the graph of the function $f(x)=\frac{3-x}{2}$ and the Horizontal Line Test to determine whether the function has an inverse.

P. 4 Inverse Functions

Guidelines for Finding an Inverse of a Function

1. Determine whether the function given by $y=f(x)$ has an inverse function.
2. Solve for x as a function of $y: x=g(y)=f^{-1}(y)$.
3. Interchange x and y. The resulting equation is $y=f^{-1}(x)$.
4. Define the domain of f^{-1} as the range of f.
5. Verify that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.

Example 3: Find the inverse function of $f(x)=\sqrt[3]{7+x}$.

P. 4 Inverse Functions

Develop properties of the six inverse trigonometric functions.

\[

\]

P. 4 Inverse Functions

Develop properties of the six inverse trigonometric functions.
The graphs of the six inverse trigonometric functions are shown in Figure P. 39.

Domain: $[-1,1]$
Range: $[-\pi / 2, \pi / 2]$

Domain: $(-\infty,-1] \cup[1, \infty)$
Range: $[-\pi / 2,0) \cup(0, \pi / 2]$
Figure P. 39

Domain: $[-1,1]$
Range: $[0, \pi]$

Domain: $(-\infty,-1] \cup[1, \infty)$ Range: $[0, \pi / 2) \cup(\pi / 2, \pi]$

Domain: $(-\infty, \infty)$
Range: $(-\pi / 2, \pi / 2)$

Domain: $(-\infty, \infty)$
Range: $(0, \pi)$

P. 4 Inverse Functions

Develop properties of the six inverse trigonometric functions.

> Properties of Inverse Trigonometric Functions 1. If $-1 \leq x \leq 1$ and $-\pi / 2 \leq y \leq \pi / 2$, then $$
\sin (\arcsin x)=x \text { and } \arcsin (\sin y)=y .
$$ 2. If $-\pi / 2<y<\pi / 2$, then $$
\tan (\arctan x)=x \text { and } \arctan (\tan y)=y .
$$ 3. If $|x| \geq 1$ and $0 \leq y<\pi / 2$ or $\pi / 2<y \leq \pi$, then $$
\sec (\operatorname{arcsec} x)=x \text { and } \operatorname{arcsec}(\sec y)=y \text {. }
$$ Similar properties hold for the other inverse trigonometric functions.

Example 3: Evaluate each expression:
a. $\arccos \frac{\sqrt{3}}{2}$
b. $\cos ^{-1} 0.5$
c. $\arctan 1$
d. $\sin ^{-1}-0.919$

P. 4 Inverse Functions

- Develop properties of the six inverse trigonometric functions.

Example 4: Solve the following.

a. $\arcsin \left(\frac{3 x-}{4}\right)=\frac{\pi}{6}$ for x
b. Given $y=\arccos 2 x$, where $0<y<\frac{\pi}{2}$, find $\tan y$.

P. 5 Exponential and Logarithmic Functions

- Develop and use properties of exponential functions.
- Understand the definition of the number e.
- Understand the definition of the natural logarithmic function, and develop and use properties of the natural logarithmic function.

Properties of Exponents

Let a and b be positive real numbers, and let x and y be any real numbers.

1. $a^{0}=1$
2. $a^{x} a^{y}=a^{x+y}$
3. $\left(a^{x}\right)^{y}=a^{x}$
4. $(a b)^{x}=a^{x} b^{x}$
5. $\frac{a^{x}}{a^{y}}=a^{x-y}$
6. $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
7. $a^{-x}=\frac{1}{a^{x}}$

Properties of Exponential Functions
Let a be a real number that is greater than 1 .

1. The domain of $f(x)=a^{x}$ and $g(x)=a^{-x}$ is $(-\infty, \infty)$.
2. The range of $f(x)=a^{x}$ and $g(x)=a^{-x}$ is $(0, \infty)$.
3. The y-intercept of $f(x)=a^{x}$ and $g(x)=a^{-x}$ is $(0,1)$.
4. The functions $f(x)=a^{x}$ and $g(x)=a^{-x}$ are one-to-one.

P. 5 Exponential and Logarithmic Functions

- Develop and use properties of exponential functions.
- Understand the definition of the number e.
- Understand the definition of the natural logarithmic function, and develop and Connecting Notations use properties of the natural logarithmic function.

Definition of the Natural Logarithmic Function

The notation $\ln x$ is read as "el en of x " or "the natural log of x."

Let x be a positive real number. The natural logarithmic function, denoted by $\ln x$, is defined as

$$
\ln x=b \quad \text { if and only if } e^{b}=x
$$

Properties of the Natural Logarithmic Function

1. The domain of $g(x)=\ln x$ is $(0, \infty)$.
2. The range of $g(x)=\ln x$ is $(-\infty, \infty)$.
3. The x-intercept of $g(x)=\ln x$ is $(1,0)$.
4. The function $g(x)=\ln x$ is one-to-one.

Properties of Logarithms
Let x, y, and z be real numbers such that $x>0$ and $y>0$.

1. $\ln x y=\ln x+\ln y$
2. $\ln \frac{x}{y}=\ln x-\ln y$
3. $\ln x^{2}=z \ln x$

P. 5 Exponential and Logarithmic Functions

Understand the definition of the natural logarithmic function, and develop and use properties of the natural logarithmic function.
Example 1: Expand the following Logarithmic Expressions.
a. $\ln 3 x^{2} y$
b. $\ln \frac{\sqrt{4 x+1}}{8}$

Example 2: Solve for x.
a. $e^{3 x-7}=2$
b. $\ln (6-x)=3$

