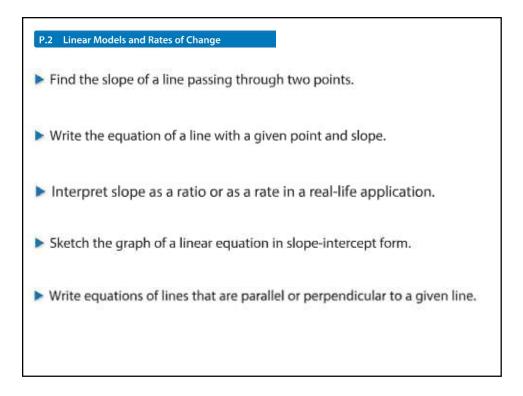


P.1 Graphs and Models
Find the points of intersection of two graphs.
Example 2: Find all points of intersection of the graphs of $y + x^2 = 9$ and $y - x = 3$.

P.1 Graphs and	Model	ls	
Fit a mathematical	model t	to a real-life data set.	
			eled by a sine or cosine function. that satisfies the specified
Displacement (t=0)	0 cm		
Amplitude	4 cm		
Period	6 sec		



P.2 Linear Models and Rates of Change

Find the slope of a line passing through two points.

Interpret slope as a ratio or as a rate in a real-life application.

Definition of the Slope of a Line

The slope *m* of the nonvertical line passing through (x_1, y_1) and (x_2, y_2) is

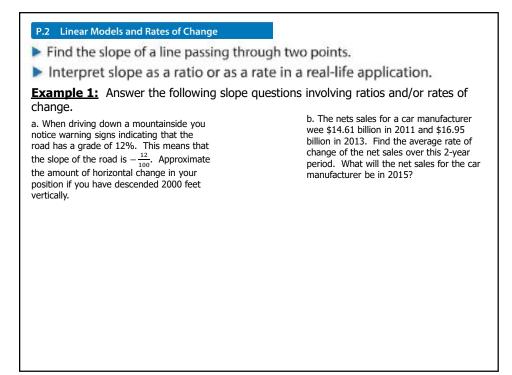
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}, \quad x_1 \neq x_2.$$

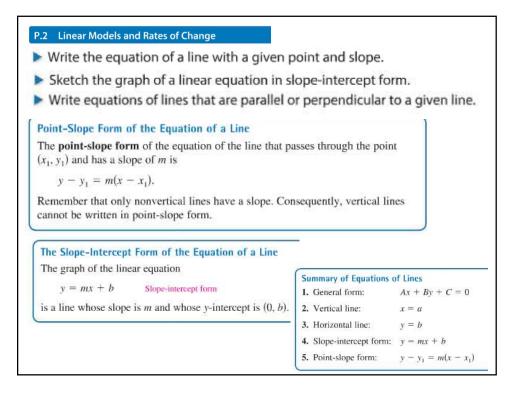
Slope is not defined for vertical lines.

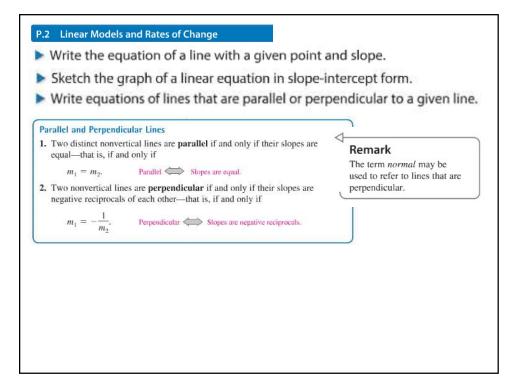
Ratios and Rates of Change

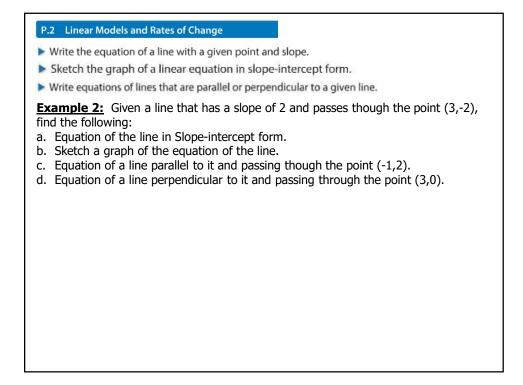
The slope of a line can be interpreted as either a *ratio* or a *rate*. If the *x*- and *y*-axes have the same unit of measure, then the slope has no units and is a **ratio**. If the *x*- and *y*-axes have different units of measure, then the slope is a rate or **rate of change**. In your study of calculus, you will encounter applications involving both interpretations of slope.

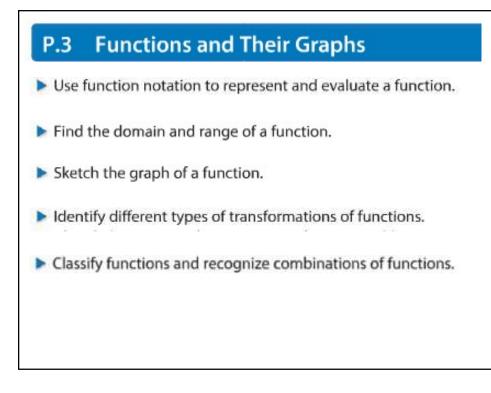
The rate of change found in Example 3 is an **average rate of change.** An average rate of change is always calculated over an interval. In this case, the interval is [2000, 2012]. In Chapter 2, you will study *instantaneous rate of change*.





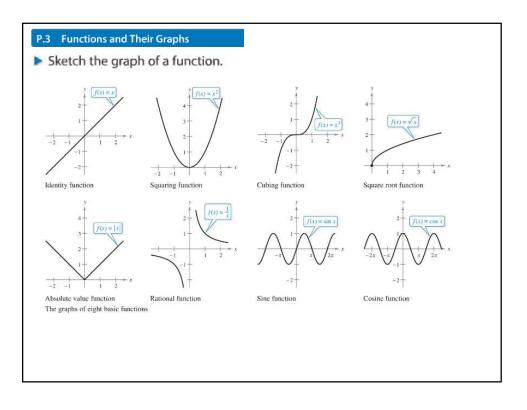


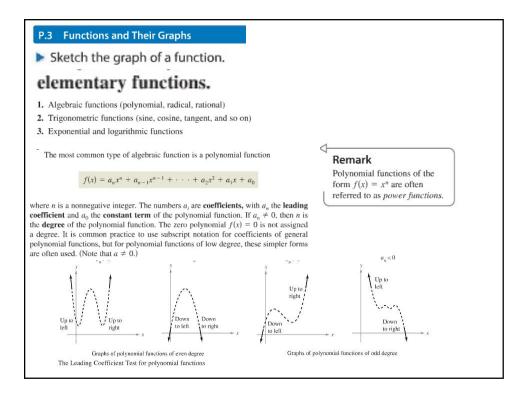




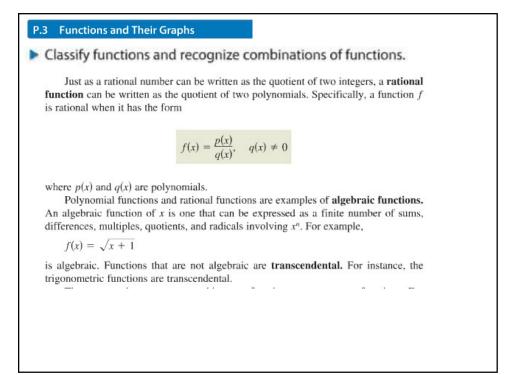


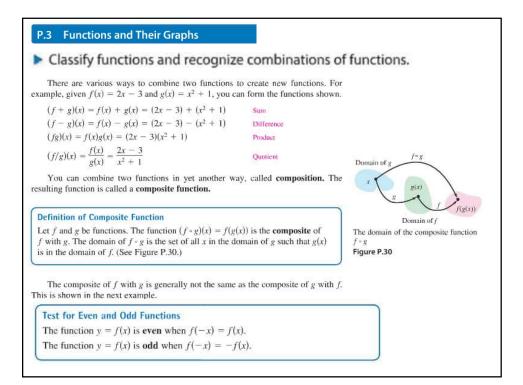
P.3 Functions and Their Graphs Use function notation to represent and evaluate a function. Find the domain and range of a function. **Example 1:** For the function *f* defined by $f(x) = 8 - 2x^2$, evaluate each expression. *a.* f(2) *b.* f(x-3) *c.* $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ **Example 2:** Find the domain and range of each function. *a.* $f(x) = \sqrt{49 - x^2}$ *b.* $g(x) = \sec x$ *c.* $h(x) = \begin{cases} 2 - x, x \le 2 \\ \sqrt{x-2}, x > 2 \end{cases}$



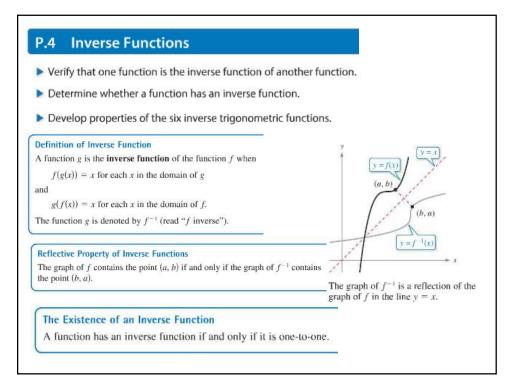


Basic Types of Transformations (c >	0)
Original graph:	y = f(x)
Horizontal shift c units to the right:	y = f(x - c)
Horizontal shift c units to the left:	y = f(x + c)
Vertical shift c units downward:	y = f(x) - c
Vertical shift c units upward:	y = f(x) + c
Reflection (about the x-axis):	y = -f(x)
Reflection (about the y-axis):	y = f(-x)
Reflection (about the origin):	y = -f(-x)





P.3 Functions and Their Graphs Classify functions and recognize combinations of functions. Example 3: For f(x) = 3x + 4 and $g(x) = 2x^2 + 2$, find each composite function. a. $f^\circ g$ b. $g^\circ f$ Example 4: Determine whether the following functions are even, odd, or neither. Then find the zeros of the functions. a. $f(x) = 3x^2 + 4x - 7$ b. $g(x) = 1 - \cos x$



P.4 Inverse Functions

- Verify that one function is the inverse function of another function.
- Determine whether a function has an inverse function.
- Develop properties of the six inverse trigonometric functions.

Example 1: Show that the functions $f(x) = x^2 + 1$, $x \ge 0$, and $g(x) = \sqrt{x-1}$ are inverse functions of each other.

Example 2: Use the graph of the function $f(x) = \frac{3-x}{2}$ and the Horizontal Line Test to determine whether the function has an inverse.

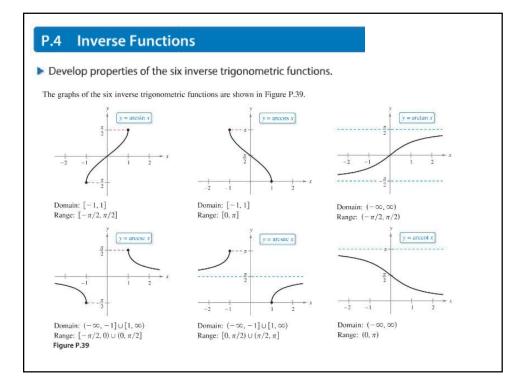
P.4 Inverse Functions

Guidelines for Finding an Inverse of a Function

- 1. Determine whether the function given by y = f(x) has an inverse function.
- **2.** Solve for x as a function of y: $x = g(y) = f^{-1}(y)$.
- **3.** Interchange x and y. The resulting equation is $y = f^{-1}(x)$.
- **4.** Define the domain of f^{-1} as the range of f.
- 5. Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Example 3: Find the inverse function of $f(x) = \sqrt[3]{7 + x}$.

evelop properties of the six in	verse trigonometric func	tions.
Definition of Inverse Trigon	ometric Functions	
Function	Domain	Range
$y = \arcsin x$ iff $\sin y = x$	$-1 \leq x \leq 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \arccos x \text{ iff } \cos y = x$	$-1 \leq x \leq 1$	$0 \le y \le \pi$
$y = \arctan x$ iff $\tan y = x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
$y = \operatorname{arccot} x \operatorname{iff} \operatorname{cot} y = x$	$\infty > x > \infty -$	$0 < y < \pi$
$y = \operatorname{arcsec} x \operatorname{iff} \operatorname{sec} y = x$	$ x \ge 1$	$0 \le y \le \pi, y \ne \frac{\pi}{2}$
$y = \operatorname{arccsc} x \operatorname{iff} \operatorname{csc} y = x$	$ x \ge 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$



Properties of Inverse Tri	gonometric Functions		
1. If $-1 \le x \le 1$ and $-$			
$\sin(\arcsin x) = x$	and $\arcsin(\sin y) = y$.		
2. If $-\pi/2 < y < \pi/2$	2, then		
$\tan(\arctan x) = x$	and $\arctan(\tan y) = y$.		
3. If $ x \ge 1$ and $0 \le y$	$< \pi/2 \text{ or } \pi/2 < y \le \pi$, then		
$\sec(\operatorname{arcsec} x) = x$	and $\operatorname{arcsec}(\operatorname{sec} y) = y$.		
Similar properties hold for	or the other inverse trigonometric fu	nctions.	
xample 3: Evalu	uate each expression:		
arccos $\frac{\sqrt{3}}{2}$	b. cos ⁻¹ 0.5	c. arctan 1	$d.sin^{-1} - 0.91$

P.4 Inverse Functions

Develop properties of the six inverse trigonometric functions.

Example 4: Solve the following.

a.
$$\operatorname{arcsin}\left(\frac{3x^{-1}}{4}\right) = \frac{\pi}{6} \text{ for } x$$

b. Given $y = \arccos 2x$, where $0 < y < \frac{\pi}{2}$, find $\tan y$.

P.5 Exponential and Logarithmic Functions

- Develop and use properties of exponential functions.
- Understand the definition of the number e.

Properties of Exponents

Let a and b be positive real numbers, and let x and y be any real numbers.

1.
$$a^{0} = 1$$

2. $a^{x}a^{y} = a^{x+y}$
5. $\frac{a^{x}}{a^{y}} = a^{x-y}$
6. $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$

y 3.
$$(a^x)^y = a^{xy}$$
 4. $(ab)^x = a^x b^x$
7. $a^{-x} = \frac{1}{a^x}$

Properties of Exponential Functions

Let *a* be a real number that is greater than 1.

- 1. The domain of $f(x) = a^x$ and $g(x) = a^{-x}$ is $(-\infty, \infty)$.
- **2.** The range of $f(x) = a^x$ and $g(x) = a^{-x}$ is $(0, \infty)$.
- 3. The y-intercept of $f(x) = a^x$ and $g(x) = a^{-x}$ is (0, 1).
- 4. The functions $f(x) = a^x$ and $g(x) = a^{-x}$ are one-to-one.

Understand the definition of the natural logarithmic function, and develop and use properties of the natural logarithmic function.

