2.4 The Chain Rule

- Find the derivative of a composite function using the Chain Rule.
- Find the derivative of a function using the General Power Rule.
- Simplify the derivative of a function using algebra.
- Find the derivative of a transcendental function using the Chain Rule.
- Find the derivative of a function involving the natural logarithmic function.
- Define and differentiate exponential functions that have bases other than e.

THEOREM 2.11 The Chain Rule
If $y=f(u)$ is a differentiable function of u and $u=g(x)$ is a differentiable
function of x, then $y=f(g(x))$ is a differentiable function of x and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

or, equivalently,
$\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$.

Insight

On the AP ${ }^{\oplus}$ Exam, the Chain Rule is just as widely tested conceptually as it is analytically.

2.4 The Chain Rule

THEOREM 2.12 The General Power Rule
If $y=[u(x)]^{n}$, where u is a differentiable function of x and n is a rational number, then

$$
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x}
$$

or, equivalently,
$\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}$.

Example 1: For each function $y=f(g(x))$, identify $u=g(x)$ and $y=f(u)$.
a. $y=\left(x^{2}-1\right)^{3}$
b. $y=\sin x^{2}$
c. $y=\frac{2}{(x+7)^{4}}$

Example 2: Find $\frac{d y}{d x}$ for $y=g(x)$ and $y=\frac{1}{(3 x-5)^{2}}$.

2.4 The Chain Rule

Example 3: Find the derivative of each function.
a. $f(x)=\left(5 x^{2}+2 x\right)^{7}$
b. $g(t)=\frac{6}{\left(3 t^{2}-5\right)^{5}}$

Example 4: Find all points on the graph of $f(x)=\sqrt[5]{\left(2 x^{2}-8\right)^{4}}$ for which $f^{\prime}(x)=0$ and those for which $f^{\prime}(x)$ does not exist.

2.4 The Chain Rule

Example 5: Find the derivative of each function.
a. $f(x)=5 x \sqrt[3]{(3 x+1)^{2}}$
b. $f(x)=\frac{x^{2}}{\sqrt{x^{2}-3}}$
c. $f(x)=\left(\frac{4 x-1}{x^{2}-2}\right)^{2}$

2.4 The Chain Rule

Example 6: Find the derivative of each transcendental function.
a. $y=\tan \left(x^{2}+1\right)$
b. $y=e^{\frac{x}{4}}$
c. $y=\csc x^{2}$
d. $y=\csc ^{2} x$
e. $f(t)=\cos ^{2} t^{3}$

2.4 The Chain Rule

THEOREM 2.13 Derivative of the Natural Logarithmic Function Let u be a differentiable function of x.

1. $\frac{d}{d x}[\ln x]=\frac{1}{x}, \quad x>0$
2. $\frac{d}{d x}[\ln u]=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}}{u}, \quad u>0$

Example 7: Find the derivative of each transcendental function.
a. $y=\ln \left(2 x^{3}\right)$
b. $y=x^{2} \ln x$
c. $y=[\ln (x+5)]^{2}$
d. $f(x)=\ln (x-3)^{2}$
e. $f(x)=\ln \frac{x^{3}(x-3)}{\sqrt{x^{2}-9}}$

2.4 The Chain Rule

THEOREM 2.14 Derivative Involving Absolute Value
If u is a differentiable function of x such that $u \neq 0$, then

$$
\frac{d}{d x}[\ln |u|]=\frac{u^{\prime}}{u} .
$$

Definition of Exponential Function to Base a
If a is a positive real number $(a \neq 1)$ and x is any real number, then the exponential function to the base a is denoted by a^{x} and is defined by
$a^{x}=e^{(\ln a) x}$.
If $a=1$, then $y=1^{x}=1$ is a constant function.

Definition of Logarithmic Function to Base a is a positive real number $(a \neq 1)$ and x is any positive real number, then the logarithmic function to the base a is denoted by $\log _{a} x$ and is defined as

$$
\log _{a} x=\frac{1}{\ln a} \ln x .
$$

Insight

Differentiation with bases other than e are rarely tested on the AP^{Φ} Exam.

2.4 The Chain Rule

THEOREM 2.15 Derivatives for Bases Other than c
Let a be a positive real number $(a \neq 1)$ and let u be a differentiable function of x.

1. $\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$
2. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \frac{d u}{d x}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}$
4. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{(\ln a) u} \frac{d u}{d x}$

Example 8: Find the derivative of each transcendental function.
a. $y=7^{x}$
b. $y=7^{\frac{x}{2}}$
c. $y=\log _{4} \csc x$
d. $y=\log _{5} \frac{x+3}{(2 x-1)^{2}}$

2.4 The Chain Rule

> Summary of Differentiation Rules
> General Differentiation Rules Let u and v be differentiable functions of x.

2.5 Implicit Differentiation

- Distinguish between functions written in implicit form and explicit form.
- Use implicit differentiation to find the derivative of a function.
- Find derivatives of functions using logarithmic differentiation.

Example 1: Evaluate each expression.
a. $\frac{d}{d x}\left[7 x^{3}\right]$
b. $\frac{d}{d x}\left[7 y^{3}\right]$
c. $\frac{d}{d x}\left[x^{4}-2 y\right]$
d. $\frac{d}{d x}\left[\frac{x^{2}}{y^{3}}\right]$

2.5 Implicit Differentiation

Guidelines for Implicit Differentiation

1. Differentiate both sides of the equation with respect to x.
2. Collect all terms involving $d y / d x$ on one side of the equation and move all other terms to the other side of the equation.
3. Factor out $d y / d x$.
4. Solve for $d y / d x$.

Example 2: Find $\frac{d y}{d x}$ given that $2 y^{4}-y^{3} x^{2}+4 x^{3}=5$

2.5 Implicit Differentiation

Example 3: If possible, represent y as a differentiable function of x.
a. $(x-1)^{2}+y^{2}=1$
b. $x^{2}+(y-5)^{2}=1$
c. $(x-4)^{2}+(y-5)^{2}=0$

Example 4: Determine the slope of the tangent line to the graph of $\frac{x^{2}}{4}+y^{2}=6$ at the point $(2, \sqrt{5})$.

2.5 Implicit Differentiation

Example 5: Determine the slope of the tangent line to the graph of $x^{\frac{2}{3}}+y^{\frac{2}{3}}=5$ at the point $(8,1)$.

Example 6: Find $\frac{d y}{d x}$ implicitly of the equation $\sin 2 y=x$. Then find the largest interval of the form $-a<y<a$ on which y is a differentiable function of x. Write $\frac{d y}{d x}$ as a function of x.

2.5 Implicit Differentiation

Example 7: Given $(x-5)^{2}+y^{2}=36$, find $\frac{d^{2} y}{d x^{2}}$.

Example 8: Find the tangent line to the graph of $(x+2)^{2}+(y-3)^{2}=37$ at the point $(4,4)$.
2.5 Implicit Differentiation

Example 9: Find the following derivatives.
$\begin{array}{ll}\text { a. } y=\frac{(3 x+5)^{2}}{\left(x^{2}-1\right)^{3}}, x \neq-\frac{5}{3} & \text { b. } y=x^{\frac{x}{4}}, x>0\end{array}$

2.6 Derivatives of Inverse Functions

Find the derivative of an inverse function.

Differentiate an inverse trigonometric function.

THEOREM 2.16 Continuity and Differentiability of Inverse Functions
Let f be a function whose domain is an interval I. If f has an inverse function, then the following statements are true.

1. If f is continuous on its domain, then f^{-1} is continuous on its domain.
2. If f is differentiable on an interval containing c and $f^{\prime}(c) \neq 0$, then f^{-1} is differentiable at $f(c)$.
A proof of this theorem is given in Appendix A.

2.6 Derivatives of Inverse Functions

THEOREM 2.17 The Derivative of an Inverse Function
Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f^{\prime}(g(x)) \neq 0$.
Moreover,

$$
\frac{d y}{d x}=\frac{1}{d x / d y}
$$

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}, \quad f^{\prime}(g(x)) \neq 0
$$

A proof of this theorem is given in Appendix A.

回 $3 \sqrt{3}$

Example 1: Let $f(x)=3 x^{3}-x^{2}-8$.
a. What is the value of $f^{-1}(x)$ when $x=12$?
a. What is the value of $\left(f^{-1}\right)^{\prime}(x)$ when $x=12$?

2.6 Derivatives of Inverse Functions

Example 2: Let $f(x)=2 x^{3}$ and let $f^{-1}(x)=\sqrt[3]{\frac{x}{2}}$. Show that the slopes of the graphs of f and f^{-1} are reciprocals at each of the following points.
a. $(1,2)$ and $(2,1)$
b. (-2, -16) and (-16, -2)

Example 3: Find the derivative of the inverse cosine function.

2.6 Derivatives of Inverse Functions

THEOREM 2.18 Derivatives of Inverse Trigonometric Functions
Let u be a differentiable function of x.

$$
\begin{aligned}
\frac{d}{d x}[\arcsin u] & =\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \frac{d}{d x}[\arccos u] & =\frac{-u^{\prime}}{\sqrt{1-u^{2}}} \\
\frac{d}{d x}[\arctan u] & =\frac{u^{\prime}}{1+u^{2}} & \frac{d}{d x}[\operatorname{arccot} u] & =\frac{-u^{\prime}}{1+u^{2}} \\
\frac{d}{d x}[\operatorname{arcsec} u] & =\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}} & \frac{d}{d x}[\operatorname{arccsc} u] & =\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}
\end{aligned}
$$

Insight

Differentiation of inverse trigonometric functions is sometimes tested on the $\mathrm{AP}^{\text {s }}$ Exam. The inverse sine and inverse tangent functions arc the most likely topics.

Example 3: Find the derivative of each function.
a. $f(x)=\operatorname{arccsc} x^{2}$
b. $f(x)=\arccos 4 x$
c. $f(x)=\operatorname{arccot} e^{\frac{x}{3}}$
d. $f(x)=\arccos x-x \sqrt{1-x^{2}}$

2.6 Derivatives of Inverse Functions

Basic Differentiation Rules for Elementary Functions

1. $\frac{d}{d x}[c u]=c u u^{\prime}$
2. $\frac{d}{d x}[u \pm v]=u^{\prime} \pm v^{\prime}$
3. $\frac{d}{d x}[u v]=u v^{\prime}+v u^{\prime}$
4. $\frac{d}{d x}\left[\frac{u}{v}\right]=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
5. $\frac{d}{d x}[c]=0$
6. $\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}$
7. $\frac{d}{d x}[x]=1$
8. $\frac{d}{d x}[|u|]=\frac{u}{|u|}\left(u^{\prime}\right), \quad u \neq 0$
9. $\frac{d}{d x}[\ln u]=\frac{u^{\prime}}{u}$
10. $\frac{d}{d x}\left[e^{x}\right]=e^{4} u^{\prime}$
11. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{(\ln a) u}$
12. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{4} u^{\prime}$
13. $\frac{d}{d x}[\sin u]=(\cos u) u^{\prime}$
14. $\frac{d}{d x}[\cos u]=-(\sin u) u^{\prime}$
15. $\frac{d}{d x}[\tan u]=\left(\sec ^{2} u\right) u^{\prime}$
16. $\frac{d}{d x}[\cot u]=-\left(\csc ^{2} u\right) u^{\prime}$
17. $\frac{d}{d x}[\sec u]=(\sec u \tan u) u^{\prime}$
18. $\frac{d}{d x}[\csc u]=-(\csc u \cot u) u^{\prime}$
19. $\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$
20. $\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}$
21. $\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}$
22. $\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}$
23. $\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
24. $\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}$
