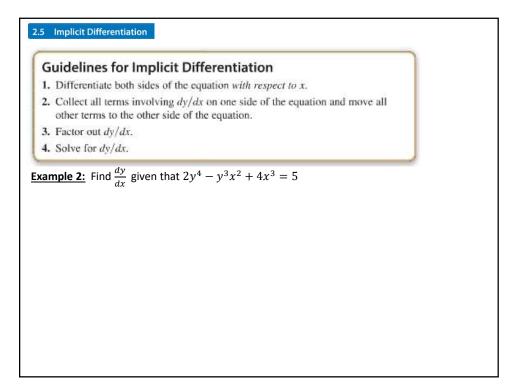
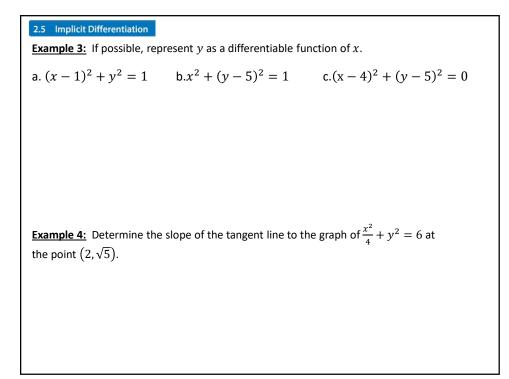


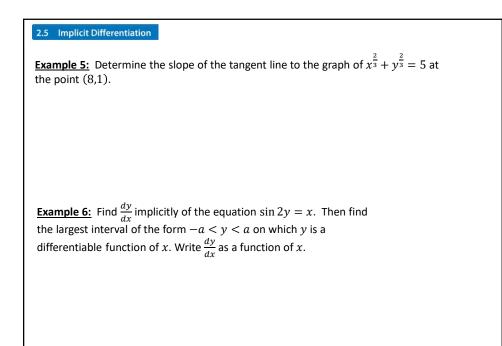
	ves for Bases Other than e mber ($a \neq 1$) and let u be a differential	ble function of x.
	2. $\frac{d}{dx}[a^u] = (\ln a)a^u \frac{du}{dx}$ 4. $\frac{d}{dx}[\log_a u] = \frac{1}{(\ln a)u}\frac{du}{dx}$	IIKI 液然数 IIKI
ample 8: Find the der	ivative of each transcendental	function.
$y = 7^x$	b. $y = 7^{\frac{x}{2}}$	
	d. $y = \log x$	<i>x</i> +3
$y = \log_4 \csc x$	d v - loc	σ

Summary of Differentia	ation Rules		
General Differentiation Rules	Let u and v be differentiable functions of x .		
	Constant Rule:	(Simple)Power Rule:	
	$\frac{d}{dx}[c] = 0, c \text{ is a real number.}$	$\frac{d}{dx}[x^n] = nx^{n-1}, \frac{d}{dx}[x] = 1, n \text{ is a rational number}$	
	Constant Multiple Rule:	Sum or Difference Rule:	
	$\frac{d}{dx}[cu] = cu', c \text{ is a real number.}$	$\frac{d}{dx}[u \pm v] = u' \pm v'$	
	Product Rule:	Quotient Rule:	
	$\frac{d}{dx}[uv] = uv' + vu'$	$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$	
	Chain Rule:	General Power Rule:	
	$\frac{d}{dx}[f(u)] = f'(u)u'$	$\frac{d}{dx}[u^n] = nu^{n-1}u', n \text{ is a rational number.}$	
Derivatives of Trigonometric Functions	$\frac{d}{dx}[\sin x] = \cos x$	$\frac{d}{dx}[\tan x] = \sec^2 x$	
	$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\frac{d}{dx}[\cos x] = -\sin x$	
	$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\frac{d}{dx}[\csc x] = -\csc x \cot x$	
Derivatives of Exponential and Logarithmic Functions	$\frac{d}{dx}[e^x] = e^x$	$\frac{d}{dx}[\ln x] = \frac{1}{x}, x > 0$	
	$\frac{d}{dx}[a^x] = (\ln a)a^x,$	$\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a)x},$	
	<i>a</i> is a positive real number $(a \neq 1)$.	a is a positive real number $(a \neq 1)$.	

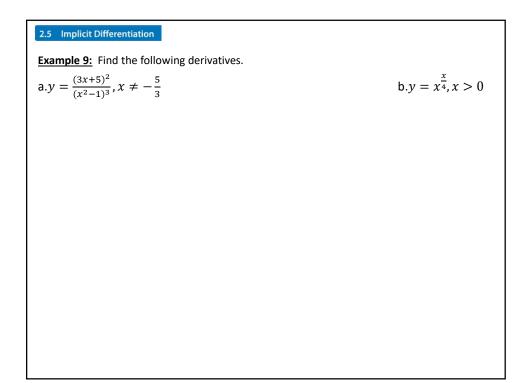
2.5 Implicit Differentiation	
Distinguish between functions	written in implicit form and explicit form.
Use implicit differentiation to f	ind the derivative of a function.
Find derivatives of functions u	sing logarithmic differentiation.
Example 1: Evaluate each express	sion.
a. $\frac{d}{dx}[7x^3]$	$b \cdot \frac{d}{dx} [7y^3]$
$c.\frac{d}{dx}[x^4-2y]$	d. $\frac{d}{dx} \left[\frac{x^2}{y^3} \right]$
$c.\frac{dx}{dx} [x - 2y]$	$\left[\frac{dx}{dx}\right]$

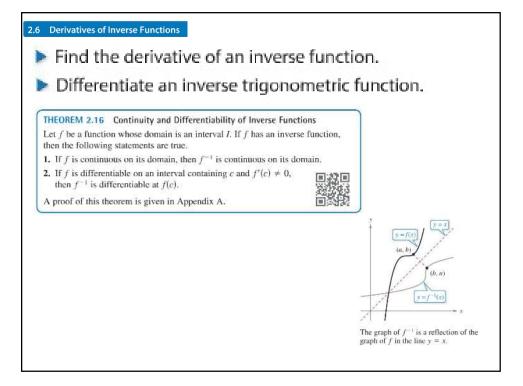


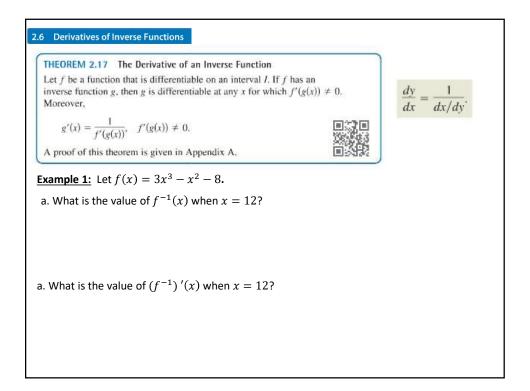


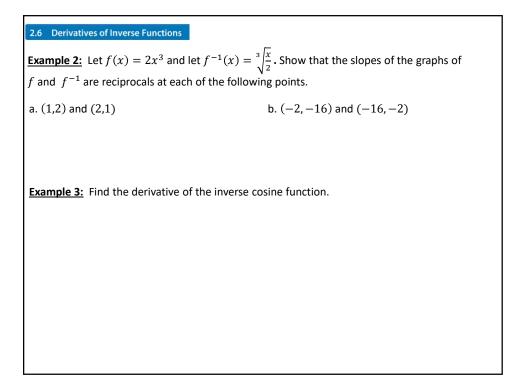


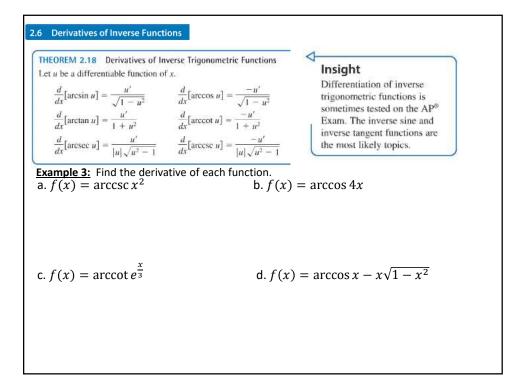
2.5 Implicit Differentiation **Example 7:** Given $(x - 5)^2 + y^2 = 36$, find $\frac{d^2y}{dx^2}$. **Example 8:** Find the tangent line to the graph of $(x + 2)^2 + (y - 3)^2 = 37$ at the point (4,4).











$1. \ \frac{d}{dx}[cu] = cu'$	$2. \frac{d}{dx}[u \pm v] = u' \pm v'$	3. $\frac{d}{dx}[uv] = uv' + vu'$
$4. \ \frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$	5. $\frac{d}{dx}[c] = 0$	$6. \ \frac{d}{dx}[u^n] = nu^{n-1}u'$
7. $\frac{d}{dx}[x] = 1$	8. $\frac{d}{dx}[u] = \frac{u}{ u }(u'), u \neq 0$	$9. \ \frac{d}{dx}[\ln u] = \frac{u'}{u}$
$0. \ \frac{d}{dx}[e^u] = e^u u'$	11. $\frac{d}{dx}[\log_a u] = \frac{u'}{(\ln a)u}$	12. $\frac{d}{dx}[a^u] = (\ln a)a^u u^u$
3. $\frac{d}{dx}[\sin u] = (\cos u)u'$	$14. \ \frac{d}{dx}[\cos u] = -(\sin u)u'$	$15. \ \frac{d}{dx} [\tan u] = (\sec^2 u)u'$
$dt = -(\csc^2 u)u'$	17. $\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$	18. $\frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$
$9. \ \frac{d}{dx} [\arcsin u] = \frac{u'}{\sqrt{1-u^2}}$	$20. \ \frac{d}{dx} [\arccos u] = \frac{-u'}{\sqrt{1-u^2}}$	21. $\frac{d}{dx} [\arctan u] = \frac{u'}{1+u^2}$
$\frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1+u^2}$	$23. \ \frac{d}{dx} [\operatorname{arcsec} u] = \frac{u^t}{ u \sqrt{u^2 - 1}}$	$24. \ \frac{d}{dx} [\operatorname{arccsc} u] = \frac{-u'}{ u \sqrt{u^2 - 1}}$