

s(t) $v(t) = s'(t)$ $a(t) = v'(t) = s''(t)$	Position function Velocity function Acceleration function		Connecting Notations The notations y" and y" are read as "y double prime" and "y triple prime," respectively. Notice that the prime notation is only used for the first, second, and third derivatives.	
First derivative: y',	f'(x),	$\frac{dy}{dx}$	$\frac{d}{dx}[f(x)],$	$D_x[y]$
Second derivative: y",	f''(x),	$\frac{d^2y}{dx^{2^*}}$	$\frac{d^2}{dx^2}[f(x)],$	$D_x^2[y]$
Third derivative: y''',	f'''(x),	$\frac{d^3y}{dx^3},$	$\frac{d^3}{dx^3}[f(x)],$	$D_x^3[y]$
Fourth derivative: y ⁽⁴⁾ ,	$f^{(4)}(x),$	$\frac{d^4y}{dx^4},$	$\frac{d^4}{dx^4}[f(x)],$	$D_x^4[y]$
nth derivative: y ⁽ⁿ⁾ ,	$f^{(n)}(x),$	$\frac{d^n y}{dx^n}$	$\frac{d^n}{dx^n}[f(x)],$	$D_x^n[y]$

2.3 Product and Quotient Rules and Higher-Order Derivatives

Example 5: The position function of an object dropped on Mars is $s(t) = -1.85t^2 + 3$, where s(t) is the height in meters and t is the time in seconds after the object is dropped. What is the ratio of Earth's gravitational force to Mars'?

Note: acceleration due to gravity on Earth is -9.8 meters per second.