

1.5 Infinite Limits	
Determine infinite limits from the left and f	he right.
Example 1: Determine the limit of each func	tion as x approaches -2 from the left and
from the right.	
$a.f(x) = \tan\frac{\pi x}{4}$	b. $y = -\frac{1}{(x+2)^2}$
	-6 -5 -3 -2 -1 0 -2 3
-3	

1.5 Infinite Limits	
Find and sketch the vertical asymptotes of the gra	ph of a function.
Example 2: Determine all vertical asymptotes	of the graphs of the functions.
$a.f(x) = \frac{4x}{x-2}$	b. $g(x) = \frac{5x^2}{x^2 - 1}$
$c.h(x) = \tan\frac{\pi x}{2}$	d. $f(x) = \frac{x^2 + x - 6}{x^2 + 4x + 3}$

1.5 Infinite Limits

Find and sketch the vertical asymptotes of the graph of a function.

Example 3: Find each limit.

$$a. \lim_{x \to -2^-} \frac{x}{(x+2)^2}$$

 $b. \lim_{x \to -2^+} \frac{x}{(x+2)^2}$

Guidelines for Finding Limits at $\pm \infty$ of Rational Functions 1. If the degree of the numerator is <i>less than</i> the degree of the denomination of the denomination of the degree of	ninator, then
the limit of the rational function is 0.If the degree of the numerator is <i>equal to</i> the degree of the denomities the limit of the rational function is the ratio of the leading coefficient.	inator, then ents.
If the degree of the numerator is greater than the degree of the de then the limit of the rational function does not exist.	nominator,
Definition of Infinite Limits at Infinity	Connecting Concepts
 Let f be a function defined on the interval (a, ∞). 1. The statement lim f(x) = ∞ means that for each positive number M, there is a corresponding number N > 0 such that f(x) > M whenever x > N. 	Determining whether a function has an infinite limit a infinity is useful in analyzing the "end behavior" of its
2. The statement $\lim_{x\to\infty} f(x) = -\infty$ means that for each negative number <i>M</i> , there is a corresponding number $N > 0$ such that $f(x) < M$ whenever $x > N$.	graph. You will see examples of this in Section 3.5 on curve
Similar definitions can be given for the statements	sketching.

1.6 Limits at Infinity
Determine (finite) limits at infinity.
Determine the horizontal asymptotes, if any, of the graph of a function.
Determine infinite limits at infinity.
Example 1: Find each limit.
$d.\lim_{x\to\infty}\frac{-x+4}{5x^2+2}$
$-x^{2} + 4$
$e. \lim_{x \to \infty} \frac{-x^2 + 4}{5x^2 + 2}$
$f \lim_{x \to \infty} \frac{-x^3 + 4}{5x^2 + 2}$

