

6.2 Volume: The Disk and Washer Methods

Example 1: Find the volume of the solid formed by revolving the region bounded by the graph of $f(x) = -x^2 + 4x - 3$ and the x-axis about the x-axis.

Example 2: Find the volume of the solid formed by revolving the region bounded by the graphs of $y = \sqrt{x}$, y = 1, and x = 4 about the line y = 1.

6.2 Volume: The Disk and Washer Methods

Example 3: Find the volume of the solid formed by revolving the region bounded by the graphs of $y = x^2$ and $y = x^3$ about the x-axis.

Example 4: Find the volume of the solid formed by revolving the region bounded by the graphs of y = 2x + 3, y = 0, x = 0, and x = 2 about the y-axis.

6.3 Volume: The Shell Method

Example 1: Find the volume of the solid of revolution formed by revolving the region bounded by $y = -x^2 + 6x - 5$ and the x-axis $(1 \le x \le 5)$ about the y-axis.

Example 2: Find the volume of the solid of revolution formed by revolving the region bounded by $x = 4 - y^2$ and the y-axis $(0 \le y \le 2)$ about the x-axis.

6.3 Volume: The Shell Method

Example 3: Use the shell method to find the volume of the solid formed by revolving the region bounded by the graphs of y = 2x + 3, y = 0, x = 0, and x = 2 about the y-axis.

6.3 Volume: The Shell Method

Example 4: A pontoon is made in the shape shown. The pontoon is designed by rotating the graph of $x = 1 - \frac{y^2}{36}, -6 \le y \le 6$ about the y-axis, where x and y are measured in feet. Find the volume of the pontoon.

6.3 Volume: The Shell Method

Example 5: Find the volume of the solid formed by revolving the region bounded by the graphs of $y = x^3 + x^2 + 3$, y = 3, and x = 1 about the line x = 3.