4.1 Antiderivatives and Indefinite Integration

```
Definition of Antiderivative
A function F}\mathrm{ is an antiderivative of }f\mathrm{ on an interval I when F
x in I.
```

THEOREM 4.1 Representation of Antiderivatives
If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form $G(x)=F(x)+C$ for all x in I where C is a constant.

4.1 Antiderivatives and Indefinite Integration

Example 1: Find the general solution of the differential equation $y^{\prime}=2$

4.1 Antiderivatives and Indefinite Integration

Basic Integration Rules

Differentiation Formula	Integration Formula
$\frac{d}{d x}[C]=0$	$\int 0 d x=C$
$\frac{d}{d x}[k x]=k$	$\int k d x=k x+C$
$\frac{d}{d x}[k f(x)]=k f^{\prime}(x)$	$\int k f(x) d x=k \int f(x) d x$
$\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$	$\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$
$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 \quad$ Power Rule
$\frac{d}{d x}[\sin x]=\cos x$	$\int \cos x d x=\sin x+C$
$\frac{d}{d x}[\cos x]=-\sin x$	$\int \sin x d x=-\cos x+C$
$\frac{d}{d x}[\tan x]=\sec ^{2} x$	$\int \sec ^{2} x d x=\tan x+C$
$\frac{d}{d x}[\sec x]=\sec x \tan x$	$\int \sec x \tan x d x=\sec x+C$
$\frac{d}{d x}[\cot x]=-\csc ^{2} x$	$\int \csc ^{2} x d x=-\cot x+C$
$\frac{d}{d x}[\csc x]=-\csc x \cot x$	$\int \csc x \cot x d x=-\csc x+C$
$\frac{d}{d x}\left[e^{x}\right]=e^{x}$	$\int e^{x} d x=e^{x}+C$
$\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$	$\int a^{x} d x=\left(\frac{1}{\ln a}\right) a^{x}+C$
$\frac{d}{d x}[\ln x]=\frac{1}{x} x>0$	$\int \frac{1}{x} d x=\ln \|x\|+C$

4.1 Antiderivatives and Indefinite Integration

Example 2: Describing antiderivatives and rewrite before integrating

a. $\int 3 x d x$

d. $\int 2 \sin x d x$
e. $\int \frac{3}{x} d x$

4.1 Antiderivatives and Indefinite Integration

Example 3: Integrate polynomials
a. $\int(x+2) d x$
b. $\int\left(3 x^{4}-5 x^{2}+x\right) d x$

4.1 Antiderivatives and Indefinite Integration

Example 4: Rewrite before integrating
a. $\int \frac{x+1}{\sqrt{x}} d x$
b. $\int\left(t^{2}+1\right)^{2} d t$

4.1 Antiderivatives and Indefinite Integration

Example 5: Finding a particular solution
Find the general solution of $\mathrm{F}^{\prime}(\mathrm{x})=e^{x}$ and find the particular solution that satisfies the initial condition $F(0)=3$

4.2 Area

Sigma Notation

The sum of n terms $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is written as

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

where i is the index of summation, a_{i} is the i th term of the sum, and the upper and lower bounds of summation are n and 1 .

Example 1: Examples of Sigma Notation

| a. $\sum_{i=1}^{6} i$ | |
| :--- | :--- | :--- |
| b. $\sum_{i=0}^{5}(i+1)$ | |
| c. $\sum_{i=5}^{8} \frac{1}{i^{2}}$ | |
| d. $\sum_{k=1}^{n} \frac{1}{n}(3 k-7)$ | |

THEOREM 4.2 Summation Formulas

1. $\sum_{i=1}^{n} c=c n, c$ is a constant
2. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
3. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
4. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

A proof of this theorem is given in Appendix A.
Example 2: Evaluate $\sum_{i=1}^{n} \frac{i^{2}+3}{n^{3}}$ for $\mathrm{n}=10,100,1000$, and 10,000
4.2 Area Example 3: Use the five rectangles in the figure 4.8(a) and (b) to find two approximations of the area of the region lying between the graph of $f(x)=-x^{2}+5$ and the x -axis between $\mathrm{x}=0$ and $\mathrm{x}=2$.

(a) The area of the parabolic region is greater than the area of the rectangles.

(b) The area of the parabolic region is
less than the area of the rectangles. less than the area of the rectangles. Figure 4.8
4.2 Area Example 4: Find the upper and lower sums for the region bounded by the graph of $f(x)=\frac{1}{4} x^{2}$ and the x-axis between $\mathrm{x}=0$ and $\mathrm{x}=2$.
4.2 Area
Definition of the Area of a Region in the Plane
Let f be continuous and nonnegative on the interval
$[a, b]$. (See Figure 4.13 .) The area of the region
bounded by the graph of f, the x-axis, and the
vertical lines $x=a$ and $x=b$ is
Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x$
where $x_{i-1} \leq c_{i} \leq x_{i}$ and
$\Delta x=\frac{b-a}{n}$.
THEOREM 4.3 Limits of the Lower and Upper Sums
Let f be continuous and nonnegative on the interval $[a, b]$. The limits as
$n \rightarrow \infty$ of both the lower and upper sums exist and are equal to each other.
That is,
$\lim _{n \rightarrow \infty} s(n)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(m_{i}\right) \Delta x$
$=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(M_{i}\right) \Delta x$
$=\lim _{n \rightarrow \infty} S(n)$
where $\Delta x=(b-a) / n$ and $f\left(m_{i}\right)$ and $f\left(M_{i}\right)$ are the minimum and maximum values of f on the subinterval.

4.2 Area

Example 6: Find the area of the region bounded by the graph of $f(y)=y^{3}$ and the y-axis for $0 \leq y \leq 1$.

4.2 Area

Example 7: Use the Midpoint Rule with $n=4$ to approximate the area of the region bounded by the graph of $f(x)=x^{2}+4$ and the x -axis for $-2 \leq x \leq 2$.

4.3 Riemann Sums and Definite Integrals

Example 1: Consider the region bounded by the graph of $f(x)=\sqrt{x}$ and the x-axis for $0 \leq x \leq 1$, as shown in the figure. Evaluate the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

where c_{i} is the right endpoint of the partition given by $c_{i}=\frac{i^{2}}{n^{2}}$ and Δx_{i} is the width of the $i^{\text {th }}$ interval.

The subintervals do not have equal widths.
Figure 4.18

4.3 Riemann Sums and Definite Integrals

Definition of Riemann Sum
Let f be defined on the closed interval $[a, b]$, and let Δ be a partition of $[a, b]$ given by

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

where Δx_{i} is the width of the i th subinterval

$$
\left[x_{i-1}, x_{i}\right] . \quad \text { ith subinterval }
$$

If c_{i} is any point in the i th subinterval, then the sum

$$
\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}+\quad x_{i-1} \leq c_{i} \leq x_{i}
$$

is called a Riemann sum of f for the partition Δ. (The sums in Section 4.2 are examples of Riemann sums, but there are more general Riemann sums than those covered there.)

4.3 Riemann Sums and Definite Integrals

Definition of Definite Integral
If f is defined on the closed interval $[a, b]$ and the limit of Riemann sums over partitions Δ

$$
\lim _{|\Delta| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

exists (as described above), then f is said to be integrable on $[a, b]$ and the limit is denoted by

$$
\lim _{|\Delta| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

The limit is called the definite integral of f from a to b. The number a is the lower limit of integration, and the number b is the upper limit of integration.

THEOREM 4.4 Continuity Implies Integrability

If a function f is continuous on the closed interval $[a, b]$, then f is integrable

Remark

Later in this chapter, you will learn convenient methods for calculating $\int_{a}^{b} f(x) d x$ for continuous functions. For now, you must use the limit definition. on $[a, b]$. That is, $\int_{a}^{b} f(x) d x$ exists.

Exploration

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That
is, when a function is integrable, does it have to be continuous? Explain your reasoning and give examples.

Describe the relationships among continuity, differentiability, and integrability. Which is the strongest condition? Which is the weakest? Which conditions imply other conditions?

4.3 Riemann Sums and Definite Integrals

Example 2: Evaluate the definite integral. $\int_{-2}^{1} 2 x d x$

$$
\begin{aligned}
& \text { THEOREM 4.5 The Definite Integral as the Area of a Region } \\
& \text { If } f \text { is continuous and nonnegative on the closed interval }[a, b] \text {, then the area } \\
& \text { of the region bounded by the graph of } f \text {, the } x \text {-axis, and the vertical lines } x=a \\
& \text { and } x=b \text { is } \\
& \text { Area }=\int_{a}^{b} f(x) d x \text {. } \\
& \text { (See Figure } 4.22 \text {.) }
\end{aligned}
$$

4.3 Riemann Sums and Definite Integrals
Example 3: Sketch the region corresponding to each definite integral. Then evaluate each integral using a geometric formula.
a. $\int_{-1}^{7} 7 d x$
b. $\int_{2}^{5}(3 x-6) d x$
c. $\int_{0}^{4} \sqrt{16-x^{2}} d x$

4.3 Riemann Sums and Definite Integrals

Example 4: Evaluate each definite integral.
a. $\int_{3}^{3} \sqrt{x^{2}-4} d x$

Definitions of Two Special Definite Integrals

1. If f is defined at $x=a$, then $\int_{a}^{a} f(x) d x=0$.
2. If f is integrable on $[a, b]$, then $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.
b. $\int_{2}^{-2}(2-x) d x$

THEOREM 4.6 Additive Interval Property
If f is integrable on the three closed intervals determined by a, b, and c, then
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
c. $\int_{-5}^{0}|x+3| d x$

> THEOREM 4.7 Properties of Definite Integrals
> If f and g are integrable on $[a, b]$ and k is a constant, then the functions $k f$ and $f \pm g$ are integrable on $[a, b]$, and
> $\begin{array}{ll}\text { 1. } \int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x & \text { 2. } \int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x .\end{array}$
4.3 Riemann Sums and Definite Integrals

Example 5: Evaluate each definite integral.

Remark
Property 2 of Theorem 4.7
can be extended to cover any
finite number of functions.
(See Example 6.)
$\int_{2}^{4}\left(x^{3}-3 x+7\right) d x$
$\int_{2}^{4} x^{3} d x=60 \quad \int_{2}^{4} x d x=6 \quad \int_{2}^{4} d x=2$

Example 6: Integral a function with a discontinuity. $\int_{0}^{4} f(x) d x$
$f(x)=\left\{\begin{array}{cc}x+4, & x<2 \\ -2 x+16, & x \geq 2\end{array}\right.$

