

Definition of Antiderivative

A function F is an **antiderivative** of f on an interval I when F'(x) = f(x) for all x in I.

THEOREM 4.1 Representation of Antiderivatives

If *F* is an antiderivative of *f* on an interval *I*, then *G* is an antiderivative of *f* on the interval *I* if and only if *G* is of the form G(x) = F(x) + C for all *x* in *I* where *C* is a constant.

Example 1: Find the general solution of the differential equation y' = 2

asic Integration Rules		
Differentiation Formula	Integration Formula	
$\frac{d}{dx}[C] = 0$	$\int 0 dx = C$	
$\frac{d}{dx}[kx] = k$	$\int k dx = kx + C$	
$\frac{d}{dx}\left[kf(x)\right] = kf'(x)$	$\int kf(x) dx = k \int f(x) dx$	
$\frac{d}{dx} \left[f(x) \pm g(x) \right] = f'(x) \pm g'(x)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$	
$\frac{d}{dx}\left[x^n\right] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1 \qquad \text{Power Rule}$	
$\frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$	
$\frac{d}{dx}\left[\cos x\right] = -\sin x$	$\int \sin x dx = -\cos x + C$	
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$	
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$	
$\frac{d}{dx}\left[\cot x\right] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$	
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$	
$\frac{d}{dx}[e^x] = e^x$	$\int e^x dx = e^x + C$	
$\frac{d}{dx}[a^x] = (\ln a)a^x$	$\int a^{k} dx = \left(\frac{1}{\ln a}\right) a^{k} + C$	

4.1 Antiderivatives and Indefinite Integration Example 3: Integrate polynomials a. $\int (x + 2) dx$ b. $\int (3x^4 - 5x^2 + x) dx$

4.1 Antiderivatives and Indefinite Integration

Example 5: Finding a particular solution

Find the general solution of $F'(x) = e^x$ and find the particular solution that satisfies the initial condition F(0) = 3

	he sum of <i>n</i> terms $a_1, a_2, a_3, \ldots, a_n$ is written as $\sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \cdots + a_n$ here <i>i</i> is the index of summation , a_i is the <i>i</i> th term of the sum, and the pper and lower bounds of summation are <i>n</i> and 1.
<u>9 1</u> : Examples	of Sigma Notation
i	
(i + 1)	
$\frac{1}{i^2}$	
$\frac{1}{n}(3k-7)$	
	սյ

4.2 Area

Example 7: Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the graph of $f(x) = x^2 + 4$ and the x-axis for $-2 \le x \le 2$.

4.3 Riemann Sums and Definite Integrals

Definition of Riemann Sum

Let f be defined on the closed interval [a, b], and let Δ be a partition of [a, b] given by

 $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$

where Δx_i is the width of the *i*th subinterval

 $[x_{i-1}, x_i]$. *i*th subinterval

If c_i is any point in the *i*th subinterval, then the sum

$$\sum_{i=1}^{n} f(c_i) \Delta x_i, \quad x_{i-1} \le c_i \le x_i$$

is called a **Riemann sum** of f for the partition Δ . (The sums in Section 4.2 are examples of Riemann sums, but there are more general Riemann sums than those covered there.)

