

### Guidelines for Solving Applied Minimum and Maximum Problems

- 1. Identify all given quantities and all quantities to be determined. If possible, make a sketch.
- Write a primary equation for the quantity that is to be maximized or minimized. (A review of several useful formulas from geometry is presented inside the back cover.)
- **3.** Reduce the primary equation to one having a *single independent variable*. This may involve the use of **secondary equations** relating the independent variables of the primary equation.
- Determine the feasible domain of the primary equation. That is, determine the values for which the stated problem makes sense.
- Determine the desired maximum or minimum value by the calculus techniques discussed in Sections 3.1 through 3.4.

### 3.6 Optimization Problems

**Example 1:** A manufacturer wants to design an open box having a square base and a surface area of 108 square inches, as shown in the image. What dimensions will produce a box with maximum volume?

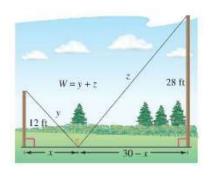


Open box with square base:



## 3.6 Optimization Problems

**Example 3:** Two posts, one 18 feet high and the other 32 feet high, stand 35 feet apart. They are to be stayed by two wires, attached to a single stake, running from ground level to the top of each post. Where should the stake be placed to use the least amount of wire?



### 3.6 Optimization Problems

**Example 4:** The demand function for a product is modeled by  $p = 56e^{-0.000012x}$ , where *p* is the price per unit (in dollars) and *x* is the number of units. What price will yield a maximum revenue?

# 3.6 Optimization Problems Free Response A right cone has a slant height of 6, as shown in the figure. (a) Write the volume V of the cone as a function of one variable, *r*. The formula for the volume of a cone is V = 1/3 πr<sup>2</sup>h. (b) What are the dimensions that maximize the volume of the cone?

| <b>3.7</b> Differentials<br>Consider a function<br>the point $(c, f(c))$ | is         |          |                   |          |           | J        | ent line at $(c)(x - c)$            |
|--------------------------------------------------------------------------|------------|----------|-------------------|----------|-----------|----------|-------------------------------------|
| This is called the <b>t</b> a                                            | angent li  | ne appro | ximation          | or linea | ar approx | imation) | ) <b>of <i>f</i> a</b> t <i>c</i> . |
| <b>Example 1</b> : Find the $(0,1)$ . Then use a $f(x)$ on an open in    | table to c | ompare t | he <i>y</i> -valu |          |           |          | •                                   |
| x                                                                        | -0.5       | -0.1     | 0.01              | 0        | 0.001     | 0.1      | 0.5                                 |
| $f(x) = 1 + \sin x$                                                      |            |          |                   |          |           |          |                                     |
|                                                                          |            |          |                   |          |           |          |                                     |

| 27 | Differentials |
|----|---------------|

### **Definition of Differentials**

Let y = f(x) represent a function that is differentiable on an open interval containing x. The **differential of x** (denoted by dx) is any nonzero real number. The **differential of y** (denoted by dy) is

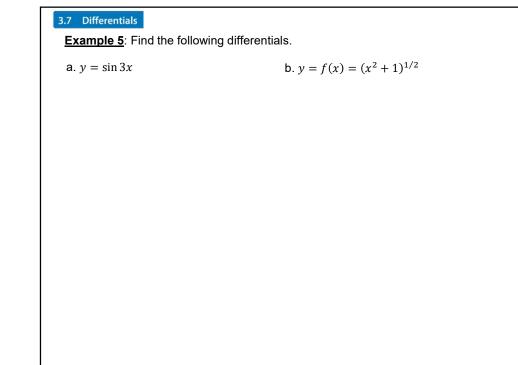
dy = f'(x)dx.

**Example 2**: Let  $y = x^2$ . Find dy when x = 1 and dx = 0.01. Compare this value with  $\Delta y$  for x = 1 and  $\Delta x = 0.01$ .

# 3.7 Differentials

**Example 3**: The measured radius of a ball bearing is 0.7 inch, as shown in the image. The measurement is correct to within 0.01 inch. Estimate the propagated error in the volume V of the ball bearing.

| Differential Formulas                                                      |                 |                      |            |              |
|----------------------------------------------------------------------------|-----------------|----------------------|------------|--------------|
| Let $u$ and $v$ be differentiable                                          | 20              | Function             | Derivative | Differential |
| Constant multiple: $d[cu] =$<br>um or difference: $d[u \pm v]$             | $] = du \pm dv$ | a. $y = x^2$         |            |              |
| <i>roduct:</i> $d[uv] =$<br><i>puotient:</i> $d\left[\frac{u}{v}\right] =$ |                 | b. $y = \sqrt{x}$    |            |              |
| 1.1                                                                        |                 | c. $y = 2 \sin x$    |            |              |
|                                                                            |                 | d. $y = xe^x$        |            |              |
|                                                                            |                 | $e. y = \frac{1}{x}$ |            |              |



3.7 Differentials
Example 6: Use differentials to approximate √16.5