3.3 Increasing and Decreasing Functions and the First Derivative Test

Definitions of Increasing and Decreasing Functions

A function f is increasing on an interval when, for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.
A function f is decreasing on an interval when, for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Communicating

When discussing the behavior of a function, remember to examine the graph of the function from left to right.

The derivative is related to the slope of a function.
Figure 3.16

3.3 Increasing and Decreasing Functions and the First Derivative Test

THEOREM 3.5 Test for Increasing and Decreasing Functions

Let f be a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

1. If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on $[a, b]$.
2. If $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on $[a, b]$.
3. If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on $[a, b]$.

Reasoning

The conclusions in the first two cases of Theorem 3.5 are valid even when $f^{\prime}(x)=0$ at a finite number of x-values in (a, b).

3.3 Increasing and Decreasing Functions and the First Derivative Test

Example 1: Find the open intervals on which $f(x)=x^{3}-\frac{3}{2} x^{2}$ is increasing or decreasing.

3.3 Increasing and Decreasing Functions and the First Derivative Test

Guidelines for Finding Intervals on Which a Function Is Increasing or Decreasing

Let f be continuous on the interval (a, b). To find the open intervals on which f is increasing or decreasing, use the following steps.

1. Locate the critical numbers of f in (a, b), and use these numbers to determine test intervals.
2. Determine the sign of $f^{\prime}(x)$ at one test value in each of the intervals.
3. Use Theorem 3.5 to determine whether f is increasing or decreasing on each interval.

These guidelines are also valid when the interval (a, b) is replaced by an interval of the form $(-\infty, b),(a, \infty)$, or $(-\infty, \infty)$.

3.3 Increasing and Decreasing Functions and the First Derivative Test

THEOREM 3.6 The First Derivative Test
Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then $f(c)$ can be classified as follows.

1. If $f^{\prime}(x)$ changes from negative to positive at c, then f has a relative minimum at $(c, f(c))$.
2. If $f^{\prime}(x)$ changes from positive to negative at c, then f has a relative maximum at $(c, f(c))$.
3. If $f^{\prime}(x)$ is positive on both sides of c or negative on both sides of c, then $f(c)$ is neither a relative minimum nor a relative maximum.

Relative minimum

Neither relative minimum nor relative maximum

3.3 Increasing and Decreasing Functions and the First Derivative Test

Example 2: Find the relative extrema of $f(x)=\frac{1}{2} x-\sin x$ in the interval $(0,2 \pi)$.

Example 3: Find the relative extrema of $f(x)=\left(x^{2}-4\right)^{2 / 3}$.

3.3 Increasing and Decreasing Functions and the First Derivative Test

Example 4: Find the relative extrema of $f(x)=\frac{x^{4}+1}{x^{2}}$.

3.3 Increasing and Decreasing Functions and the First Derivative Test

Example 5: Neglecting air resistance, the path of a projectile that is propelled at an angle θ is $y=\frac{g \sec ^{2} \theta}{2 v_{0}{ }^{2}} x^{2}+(\tan \theta) x+h, 0 \leq \theta \leq \frac{\pi}{2}$
Where y is the height, x is the horizontal distance, g is the acceleration due to gravity, v_{0} is the initial velocity, and h is the initial height. Let $g=-32$ feet per second per second, $v_{0}=24$ feet per second, and $h=9$ feet. What value of θ will produce a maximum horizontal distance?

Reasoning
third case of Theorem 3.
could be that if $f^{\prime \prime}(x)=0$
or all x in I, then f is linear.
Note, however, that concavity
not defined for a line. In
erer words, a straight line is nether concave upw,
concave downward. oncave downward.
To apply Theorem 3.7, locate the x-values at which $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}$ does not exist. Use these x-values to determine test intervals. F the test intervals.

Definition of Point of Inflection
Let f be a function that is continuous on an open interval, and let c be a point in the interval. If the graph of f has a tangent line at this point $(c, f(c)$), then this point is a point of inflection of the graph of f when the concavity of f changes. from upward to downward (or downward to upward) at the poin

```
THEOREM 3.7 Test for Concavity
```

THEOREM 3.7 Test for Concavity
Let f}\mathrm{ be a function whose second derivative exists on an open interval }
Let f}\mathrm{ be a function whose second derivative exists on an open interval }

1. If \mp@subsup{f}{}{\prime\prime}(x)>0\mathrm{ for all }x\mathrm{ in l, then the graph of f}\mathrm{ is concave upward on }l
2. If \mp@subsup{f}{}{\prime\prime}(x)>0\mathrm{ for all }x\mathrm{ in l, then the graph of f}\mathrm{ is concave upward on }l
3. If f}\mp@subsup{f}{}{\prime\prime}(x)<0\mathrm{ for all }x\mathrm{ in I, then the graph of f}\mathrm{ is concave
4. If f}\mp@subsup{f}{}{\prime\prime}(x)<0\mathrm{ for all }x\mathrm{ in I, then the graph of f}\mathrm{ is concave
downward on I.
downward on I.
proof of this theorem is given in Appendix A.
```
    proof of this theorem is given in Appendix A.
```


3.4 Concavity and the Second Derivative Test

Definition of Concavity
Let f be differentiable on an open interval I. The graph of f is
concave upward on I when f^{\prime} is increasing on the interval and concave downward on I when f^{t} is decreasing on the interval.

(b) The graph of f lies below its tangent lines.
(a) The graph of f lies above its tangent lines.
Figure 3.24

3.4 Concavity and the Second Derivative Test

THEOREM 3.7 Test for Concavity

Let f be a function whose second derivative exists on an open interval I.

1. If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave upward on I.
2. If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave downward on I

A proof of this theorem is given in Appendix A.

Reasoning

A third case of Theorem 3.7 could be that if $f^{\prime \prime}(x)=0$ for all x in I, then f is linear. Note, however, that concavity is not defined for a line. In other words, a straight line is neither concave upward nor concave downward.

3.4 Concavity and the Second Derivative Test

Example 1: Determine the open intervals on which the graphs are concave upward or concave downward.
a. $f(x)=e^{-x^{2} / 2}$.
b. $f(x)=\frac{x^{2}+1}{x^{2}-4}$.

3.4 Concavity and the Second Derivative Test

Definition of Point of Inflection
Let f be a function that is continuous on an open interval, and let c be a point in the interval. If the graph of f has a tangent line at this point $(c, f(c))$, then this point is a point of inflection of the graph of f when the concavity of f changes from upward to downward (or downward to upward) at the point.

THEOREM 3.8 Points of Inflection
If $(c, f(c))$ is a point of inflection of the graph of f, then either $f^{n}(c)=0$ or f^{n} does not exist at $x=c$.

The concavity of f is related to the slope of the derivative
Figure 3.25

3.4 Concavity and the Second Derivative Test

Example 2: Determine the points of inflection and discuss the concavity of the graph of $f(x)=x^{4}-4 x^{3}$

3.4 Concavity and the Second Derivative Test

THEOREM 3.9 Second Derivative Test
Let f be a function such that $f^{\prime}(c)=0$ and the second derivative of f exists on an open interval containing c.

1. If $f^{n}(c)>0$, then f has a relative minimum at $(c, f(c))$.
2. If $f^{\prime \prime}(c)<0$, then f has a relative maximum at $(c, f(c))$.

If $f^{\prime \prime}(c)=0$, then the test fails. That is, f may have a relative maximum, a relative minimum, or neither. In such cases, you can use the First Derivative Test.

3.4 Concavity and the Second Derivative Test

Example 3: Find the relative extrema of $f(x)=-3 x^{5}+5 x^{3}$

3.5 A Summary of Curve Sketching

Guidelines for Analyzing the Graph of a Function

1. Determine the domain and range of the function.
2. Determine the intercepts, asymptotes, and symmetry of the graph.
3. Locate the x-values for which $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ either are zero or do not exist.

Use the results to determine relative extrema and points of inflection.

Multiple Choice What are the equations of the . Multiple Choice The figure shows the graph of asymptotes of the function the second derivative of a function g. Which of the following statements are true?
$f(x)=\frac{x^{3}-1}{x^{2}-x}$?
(A) $x=0, x=1$
(B) $x=0, x=1, y=x+1$
(C) $x=0, y=x+1$
(D) $x=0, x=1, y=x$

I. The graph of g is concave upward on the interval ($2, \infty$).
II. g^{\prime} is decreasing on the interval $(-\infty, 2)$.
III. The graph of g has a point of inflection at $x=2$.
(A) I and II only (B) I and III only
(C) III only
(D) I, II, and III

3.5 A Summary of Curve Sketching

Example 1: Sketch the graph of a rational function $f(x)=\frac{x^{2}}{2\left(x^{2}-16\right)}$

3.5 A Summary of Curve Sketching

Example 2: Sketch the graph of a logistic function $f(x)=\frac{3}{1+e^{2 x}}$

3.5 A Summary of Curve Sketching

Example 5: The graph of the first derivative of a function f on the interval $[-8,8]$ is shown. Use the graph to answer each question.
a. On what interval(s) is f increasing?
b. On what interval(s) is the graph of f concave downward?
c. At what x-value(s) does f have relative extrema?
d. At what x-value(s) does the graph of f have a point of inflection?

Example 6: The graph of the second derivative of a function f is shown. Use the graph to answer each question.
a. On what intervals is the graph of f concave downward?
b. On what intervals is f^{\prime} increasing?

3.5 A Summary of Curve Sketching

Free Response The derivative of a function f is $f^{\prime}(x)=-12(x-2)^{2}(x-4)$.
(a) Does f have any relative extrema? If so, where do they occur?
(b) On what interval(s) is f decreasing?
(c) On what interval(s) is the graph of f concave downward?
(d) How many point(s) of inflection does the graph of f have? Where do they occur?

