Algebra 2: Foldable 4.1-4.5:

Requirements:

Standard: Equation form; what " a " tells us; Axis of Symmetry; Vertex
Vertex: Equation form; what " a " tells us; Axis of Symmetry; Vertex
Intercept: Equation form; what "a" tells us; Axis of Symmetry; Vertex; and x -intercepts.
Solve Square Roots (4.5)
Factoring Trinomials
Factoring GCF
Factoring Difference of Squares
Might want to add the following:

Simplifying Square Roots
Solving with Factoring

Algebra 2: Foldable 4.1-4.5 B:

Standard Form

Space \#1

$\mathbf{Y}=\mathbf{a x}^{\mathbf{2}}$

a>0 opens up $a<0$ opens down $|a|>1$ narrow $0<|a|<1$ wide

Use $\frac{-b}{2 a}$ to find x value of vertex.
Plug $\frac{-b}{2 a}$ in for x and find y to get y value of the vertex.

Space \#2

Vertex Form

Intercept Form
$\mathbf{Y}=\mathbf{a} \quad(\mathbf{x}-\mathbf{p})(\mathbf{x}-\mathbf{q})$
a>0 opens up
$\mathrm{a}<0$ opens down
$|a|>1$ narrow
$0<|a|<1$ wide
Space \#3
$(\mathbf{p}, \mathbf{0})$ and $(\mathbf{q}, \mathbf{0})$ are the x -intercepts.
x-value of the vertex is $(p+q) / 2$
y-value of vertex, plug in x and find y.

Remember:

X-value of the vertex tells how far the graph moves left or right. Y-value of the vertex tells how far the graph moves up or down.

Remember:
P and Q give you the zeros when it is in Intercept Form.

Algebra 2: Option put Space \#1 thru \#3 in 1 space:

Equation Name	Standard	Vertex	Intercept
Equation Form	$y=a x^{2}+b x+c$	$y=a(x-h)^{2}+k$	$y=a(x-p)(x-q)$
			Zeros: $(p, 0)_{\&}(q, 0)$
"a" tells what	$a>0$ opens up (minimum) $\quad\|a\|>0$ narrow $\quad\|a\|=1$ same $a<\mathbf{0}$ opens down (maximum) $\mathbf{0}<\|a\|<\mathbf{1}$ wide		
Axis of Symmetry	$x=\frac{-b}{2 a}$	$\boldsymbol{x}=\boldsymbol{h}$	$x=\frac{p+q}{2}$
Vertex F(\#) means plug \# in for x and simplify to find y .	$\left(\frac{-b}{2 a}, F\left(\frac{-b}{2 a}\right)\right)$	(h, k)	$\left(\frac{p+q}{2}, F\left(\frac{p+q}{2}\right)\right)$

(4.5) Example 2: Solve with Square Roots. Used to find zeros when

 Quadratic is in Vertex Form.$$
\begin{aligned}
& \text { Solve: } \quad \frac{1}{4}(y-6)^{2}=8 \\
& \frac{4}{1} \bullet \frac{1}{4}(y-6)^{2}=8 \bullet \frac{4}{1} \\
& \begin{array}{l}
(y-6)^{2}=32
\end{array} \\
& \sqrt{(y-6)^{2}}= \pm \sqrt{32} \\
& y-6= \pm 4 \sqrt{2} \\
& y-6= \pm 4 \sqrt{2} \\
& +6 \quad+6 \\
& y=6 \pm 4 \sqrt{2}
\end{aligned}
$$

Space \#4

Step 1: Isolate the squared term.

Step 2: Square root both sides.

Step 3: Solve for the variable.

Solve: $(x+3)^{2}=16$

$$
(x+3)^{2}=16
$$

$$
\begin{aligned}
& \sqrt{(x+3)^{2}}= \pm \sqrt{16} \\
& x+3= \pm 4
\end{aligned}
$$

$$
\begin{aligned}
& x+3= \pm 4 \\
& -3-3 \\
& \hline x=-3 \pm 4 \\
& x=-7,1
\end{aligned}
$$

Space \#5: Summary of Factoring \& Difference of Squares Formula:

Summary of Factoring:

- Step 1: If all terms have a greatest common factor other than one, then factor it out.
- Step 2: If the polynomial has:
- Two terms, then try factoring using the difference of squares formula.
- Three terms, then try the guess and check method.
- (Four or more terms, then try the factoring by grouping method.)
- Difference of Squares
(only works for something squared minus something squared)
- $a^{2}-b^{2}=(a+b)(a-b)$

Space \#6: Factor GCF:

Factoring:

GCF: The greatest common factor is the largest factor that divides all terms evenly.

- Step 1: determine the GCF and write it down.

$$
15 x^{2} y+5 x y^{2}-25 x^{3}
$$

$$
G C F=5 x
$$

Then divide each term by the GCF.

$$
5 x\left(\frac{15 x^{2} y}{5 x}+\frac{5 x y^{2}}{5 x}-\frac{25 x^{3}}{5 x}\right)
$$

- Step 2: Simplify. Answer: $5 x\left(3 x y+y^{2}-5 x^{2}\right)$
- Step 3: Check the result $5 x(3 x y)+5 x\left(y^{2}\right)-5 x\left(5 x^{2}\right)$ by using Distributive Property.

$$
15 x^{2} y+5 x y^{2}-25 x^{3} \quad \sqrt{ }
$$

Space \#7: Pick a Method (Area Method/Guess \& Check Method/Table

Method) Table Method shown below.

- The Table Method incorporates both the Area Method and the Guess and Check Method.

$$
4 x^{2}+15 x+9=(4 x+3)(x+3)
$$

Step 1: Draw parentheses

Step 2: Fill in the missing factors to get the first term.
() ()
$(2 x)(2 x \quad)$ or ($4 x \quad)(1 x \quad)$

Space \#8: Solve by Factoring: Used to find zeros/roots when the Quadratic is in Standard From

- Step 1: Factor the polynomial.
- Step 2: Set each factor equal to zero and solve.

Example:

$$
\begin{aligned}
& \begin{array}{l}
2 x^{2}-x-21=0 \\
(2 x-7)(x+3)=0 \\
2 x-7=0 \quad x+3=0 \\
\frac{+7+7}{2 x}=\frac{7}{2} \\
\frac{-3-3}{x=-3} \\
x=\frac{7}{2}
\end{array} \quad x=\frac{7}{2} \text { or } x=-3
\end{aligned}
$$

